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A normal coordinate treatment of the low frequency vibrations of formic acid and acetic acid dimers was made using 
the rigid monomer model. The potential function was expressed in terms of the H- -O stretching and the O-H- -O and 
H- -O=C-O bonding potential constants, which were calculated from the observed infrared frequencies and the entropy of 
dimerization. The H -O stretching force constant was found to be 0.33 X 106 dyne/cm., which is 5 % of the H-O stretching 
force^ constant. The low frequency vibrations are described in terms of the translational and rotational amplitudes and the 
fractional potential energy associated with each potential constant. The assumption of the rigid monomer model was ex­
amined and found to be satisfactory. The value of atomic polarization calculated on the assumption of independent rigid 
monomers with the monomer dipole moment is somewhat too small but plausible changes in the dipole moment of each 
monomer unit yield agreement with the observed polarization. 

A carboxylic acid monomer R-COOH has nine 
and the dimer (R-COOH)2 twenty-four degrees of 
vibrational freedom other than the internal vibra­
tions of the R groups. As the result of an electron 
diffraction study the dimer molecule was found to 
be planar2 with the point group C2n. Therefore 
those twenty-four vibrations of dimer molecules 
are grouped into nine ag, eight bu, four au and three 
bg vibrations. Of these seven ag, seven bu, two b g 
and two au vibrations can be correlated with the 
corresponding internal vibrations of two monomer 
units, while the remaining two ag, one bu, one bg 
and two au vibrations may approximately be de­
scribed as the translational and rotational vibra­
tions of two monomer units against each other. In 
the present paper, the nature of the vibrations of 
the latter group will be discussed. 

Due to their low frequencies, few measurements 
have been made of these vibrations of carboxylic 
acid dimers. Bonner and Kirby-Smith8 observed a 
Raman line at 232 cm. - 1 of formic acid dimer in 
the vapor phase. Infrared absorption of trifluoro-
acetic acid dimer was studied by Oetjen,4 but no 
strong band was observed in the region 90-250 
cm. - 1 . However, Millikan and Pitzer6 observed 
two infrared bands of formic acid dimer at 237 and 
160 cm. - 1 and a band of acetic acid dimer at 188 
cm. - 1 . 

Normal coordinate treatments on these low fre­
quency vibrations have been made by Halford6 and 
by Slutsky and Bauer.7 In each of their treat­
ments approximations were made which, although 
appropriate at that time, should now be removed in 
order to allow more realistic comparison with the 
recently obtained spectral frequencies. 

Low Frequency In-plane Vibrations.—The vibra­
tion frequencies and normal coordinates may be 
calculated by the GF matrix method of Wilson.8 

In ring molecules such as carboxylic acid dimer, 
however, the total number of internal coordinates 
exceeds that of the vibrational degrees of freedom, 
and it is preferable to express the inverse kinetic 
(G) and potential energy matrices (F) in terms of 
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appropriate symmetry coordinates which are or­
thogonal to redundant coordinates. Redundant 
coordinates of carboxylic acid dimer in the ag sym­
metry class are linear combination of the interbond 
angle coordinates only, while symmetry coordi­
nates and redundant coordinates in the bu class are 
to be expressed as linear combinations of the inter­
bond angle coordinates as well as of the bond 
stretching coordinates and the coefficients are quite 
complicated and impractical to calculate. Accord­
ingly it is more practical to deal with each monomer 
unit as a rigid body. 

As a first approximation, then, the kinetic energy 
Tx of the in-plane low frequency vibrations may be 
expressed as 

2V = MI(ARA)' + (AR*)*] + h (<^2 + " B 2 ) (D 

where M is the mass of each monomer unit, R the 
distance between the center of mass of the dimer 
and that of a monomer unit, u the in-plane rota­
tional displacement of an individual monomer unit 
around its own center of mass., Jz the corresponding 
moment of inertia, and the subscripts A and B refer 
to the monomer units A and B, respectively (see 
Fig. 1). The internal symmetry coordinates in the 
ag symmetry class are 

S1 = (ARA + AtfB)/2 ' / . 
a n d 

S8 = (o>j, + « B ) / 2 V . (2) 

and those in the bu class are 
S3 = («A - « B ) / 2 ' / I (3) 

The coordinate (ARA. — Ai?B)/2I/" is redundant. 
The elements of the inverse kinetic energy ma­

trix expressed in terms of these symmetry coordi­
nates are 

Gn = X/M 
Gu = UIz 

and 
Gil - 0(for * s«5 j) (4) 

The symmetry coordinate $2 yields non-zero angu­
lar momentum of 2l/'Iz$2, which is to be canceled 
out with an over all rotation of the dimer (Iz': its 
moment of inertia) in the opposite sense with an 
angular velocity of 2'ATz.Ss/Iz'• The kinetic energy 
associated with S2 is, then, equal to azJz-$2

2/2 and 
the corresponding element of G is Gn = l/Izdi 
where az = 1 — (2Iz/Iz'). If this correction 
is ignored, G22 = 1/Iz. It may be mentioned 
here that the correction for non-zero angular mo­
mentum is necessary only for the symmetric vi­
brations and not for the antisymmetric vibrations 
since the symmetry coordinates in the latter case 
yield zero angular momentum. 
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The potential function V' for the in-plane vibra­
tions is 
27 ' = Kl(Ar1,)* + (Ar«)«] + H1' [(Aa198)

8 + 
(AOM,) ' ] + H1' [(Aa0I9)2 + (Aa664)*] (5) 

where fig is the bond distance O1-Hg, and am and 
a0i9 are the interbond angles Os-Hg • • Oi and Hg • • 
Oi-Co, respectively (see Fig. 1). All the cross terms 
were neglected. The internal coordinates just 
given may be expressed in terms of the symmetry 
coordinates (see eq. 2 and 3). Then the elements 
of the potential energy matrix F are calculated as 

F11 = 4K cos8 S + [4(H1' + H2') sin8 S]Zr1,' 
F12 = 4KR cos S sin S - [4(H1' + H2')R cos S sin o]/r19

8 

F22 = 4KR* sin8 S + [4(H1' + H2')R* cos8 5]/r19
8 

F3, = 4Kyt* + 4(H1W + H2W)MS 

and 
Fa = F1, = O (6) 

where R = (XA2 + ^ A 2 ) ' ^ and 5 = t a n - 1 ( ^ A A A ) and 
XA. and ^ A give the position of the center of mass of 
the monomer uni t A. 

Low Frequency Out-of-plane Vibrations.—The 
first approximation to the kinetic energy T0 of 
the out-of-plane low frequency vibrations may be 
expressed as 

2V = Jxx(XA8 + XB5) - 2IXY(XAH + 

XB^B) + / Y Y ( ^ A 8 + ^ B 8 ) (7) 

where x a n d ^ are the rotational displacement of a 
monomer unit around axes through the center of 
mass of the monomer and parallel to the X- and Y-
axes, respectively, and / x x , IYY and 7XY are the 
corresponding moments of inertia and product of 
inertia. The internal symmetry coordinates in the 
au symmetry class are 

St = (XA + XB)/2'A 
and 

S6 = (H + *B)/2VI (8) 

and those in the b g class are 
S6 = I - (XA - XB) sin S + (H - ^ 8 ) cos «]/21A (9) 

The coordinate (XA — XB) cos 8 + (^A — ^ B ) sin 5 
is redundant . The elements of the inverse kinetic 
energy matrix expressed in terms of these symmetry 
coordinates are 

Gn — IYYZ(IXXIYY — IXY*) 

Ga — IXYZUXXIYY — IXY*) 

C66 = IXX/(IXXIYY - /xx2) (10) 
GK* = (JVY sin2 o — 21XY sin 5 cos 8 + 

Ixx cos8 6)/(IXXIYY ~ / xv ! ) 
and 

Ga, — GM = 0 

The symmetry coordinate S6 yields non-zero angu­
lar momentum and the apparent GM* must be cor­
rected as in the case of S2. In this case the deriva­
tion of the correction is much more complex;9 

the result is 
IXX'IYY' — (IXY')* 

Gu, = ( H ) 
4MR*(IXXIYY - IXY') 

where I x x ' , etc., are the moments and product of 
inertia of the dimer. 

The potential function V used for the out-of-
plane vibrations is 
2V = ^'[(A(S198)8 + (A/364a)

8] + HZ[A(J01)
8 + 
(AS66)

8] (12) 

where j8i»8 is the interbond angle O8-H9 • • Oj and 
(9) This formula was obtained by induction and verified numerically 

by appropriate reduction of the exact G matrix of Appendix I. 
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Fig. 1.—Coordinates of carboxylic acid dimer. 

0oi the internal rotation angle around the Co=Oi 
bond. All the interbond angles are assumed to be 
120° except for « ( 0 - H • • 0 ) = 180°. The in­
ternal coordinates, expressed in terms of the sym­
metry coordinates, are substituted into eq. 12 to 
obtain the elements of the potential energy matrix 
F. 

Fu = 4(F1" + 4HSZZWZr1,* 
FK = 4(HSxW - 4HSx^JZ)Zr1,* 
F^ = 4(HSx1* + 4HSxSIZ)Zr1,* 
Fw = F6, = 0 
Fm - 4 (H/ + 4H1'/Z)R*/n,* (13) 

Up to this point we have treated each monomer 
unit as a rigid body. This approximation is less 
satisfactory for the out-of-plane than for the in-
plane vibrations because of the relatively low fre­
quency and force constant associated with the O - H 
torsional motion. Consequently the validity of 
the rigid monomer model was investigated by a 
complete calculation for the out-of-plane motions. 
The mathematical details are given in Appendix I 
and the results are discussed below. 

Entropy of Low Frequency Vibrations.—Since 
only a few of the low vibrational frequencies have 
been observed in spectra, it is necessary to use the 
entropy da ta to assist in determining potential 
constants. The dissociation equilibria of carboxylic 
acid dimers have been measured by many workers. 
Recently Taylor and Bruton1 0 measured dimeriza­
tion equilibria of formic acid and acetic acid over 
the temperature range 50-150° a t relatively low 
pressures. The entropies of the low frequency vi­
brations of the two acids were calculated from the 
measured values of the entropy of dimerization. 
The results of these calculations are shown in Table 
I . 

The translational and rotational entropies of 
formic acid monomer were calculated by the use of 
the bond distances and interbond angles deter­
mined by a microwave measurement.1 1 T h e val­
ues for the dimer are given below. The vibrational 
entropies of the monomer and dimer of formic acid 
were calculated by the use of the frequencies ob­
served by Millikan and Pitzer.5 '12 A similar calcu­
lation was made for acetic acid where the change in 
vibrational entropy on dimerization was assumed 
to be the same as in the case of formic acid. The 
bond distances and angles of acetic acid monomer 

(10) M. D. Taylor, T H I S JOURNAL, 73, 315 (1951); M. D. Taylor 
and J. Bruton, ibid., 74, 4151 (1952). 

(11) R. G. Lerner, B. P. Dailey and J. P. Friend, / . Ckem. Phys., 
26, 680 (1957). 

(12) R. C. Millikan and K. S. Pitzer, ibid., 21, 1305 (1957). 
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TABLE I 

ENTROPY OF DIMERIZATION A T 3 7 3 ° K . ( IN C A L . / D E G . M O L E ) 

. * ~—Entropy . 
Monomer Dimer Dimerization 

(A) Formic acid 

Translation 4- rotation 60.23 67.04 - 5 3 . 4 2 
High frequency vibration 1.81 2.46 — 1.16 
Low frequency vibration . . . 18.60 +18 .60 
Thermal —35.98° 

(B) Acetic acid 

Translation 4- rotation 63 .72 69 . 50 - 57, 94 
High frequency vibration — 1.16'' 
Low frequency vibration . . . 22.26 4-22.26 
Thermal - 3 6 . 8 4 " 

a Ref. 10. h Assumed to be the same as in the case of formic 
acid. 

were assumed to be the same as the corresponding 
quantities in the dimer. 

Entropy of Dimerization by Classical Mechanics. 
—At the temperatures of interest for carboxylic 
acids in the vapor state the low frequency vibra­
tions may be t reated by classical statistical me­
chanics in good approximation. For example a t 
373 0 K . the error of the classical calculation of the 
entropy of the six low frequency vibrations is only 
0.1 cal. /deg. mole for formic acid, and it would be 
less for any other carboxylic acid. The classical 
formulation of the entropy of dimerization explicitly 
cancels many extraneous factors such as masses and 
moments of inertia and shows the essential rela­
tionship to the force constants of the bonds con­
necting the monomer units. 

The dimensions of the monomer are assumed to 
remain unchanged in the dimer; this is not exactly 
t rue in the case of formic acid, where da ta are 
available, bu t is a useful approximation. 

The classical expression for the entropy of a vi­
brational mode 

.V; - A!|.l 4- \n(kT/hcn)} (14) 

is used together with the conventional equation for 
translational and rotational entropy. Also the 
product of the vibration frequencies is obtained 
from the product of the determinants of G and F, as 

}[(2,r^i1 = [G]1A-[F]^ 05) 

After extensive cancellation the entropy of dimeri­
zation is 

A.S" = A S / 4- R{2 In T - V2 I u / ) - 108.00 (10) 
where ASY' is the change in entropy of high fre­
quency vibration on dimerization a n d / i s the follow­
ing function of potential function constants. 

/ = I (J^y^iKHSHSyftH,' 4- HS)(H1" + ^H2") X 

[Ky1,* + (Hi'xi*+Hi'xi'
i)/r,»i}~\ (17) 

Without reference to the particular values of the 
quantities remaining in equation 16, it is apparent 
tha t the entropy of dimerization is independent of 
the mass and moments of inertia of the monomer 
units because these quantit ies have canceled (ex­
cept possibly for a very small effect on high fre­
quency vibrations in ASV'). Thus, if the dimensions 
and force constants associated with the hydrogen 
bonds remain the same for a series of carboxylic 
acids, the entropy of dimerization will remain con­

s tant also. The approximate constancy of the 
entropy of dimerization has been noticed by others,7 

but the explanation is much more apparent in these 
terms. 

The values shown in Table I indicate tha t the 
hydrogen bonding in acetic acid is a little stronger 
than tha t in formic acid. Approximately a 1 3 % 
average difference in the potential constants is in­
dicated by the classical formula, but other approxi­
mations make it probable tha t the true difference is 
somewhat smaller. The heat of dissociation of the 
dimer is about 8% larger for acetic than for formic 
acid, hence this difference in potential constants 
seems very reasonable. 

Evaluation of Potential Constants.—The poten­
tial function as expressed in equations 5 and 12 
contains three force constants for in-plane motions 
and two for out-of-plane motions. Since there are 
only three observed frequencies for formic acid and 
but one for acetic acid and since the entropy yields 
but one additional datum, it is clearly impossible to 
evaluate five independent constants for each acid. 
In order to obtain a reasonable excess of da ta over 
adjustable constants, it was assumed tha t (1) the 
constants for acetic and formic acids are the same 
and (2) the bending constants H1 and Hi are the 
same for in-plane and for out-of-plane motion, i.e., 
H1' = Hx" and/Z 2 ' = Ih". I t was shown in the pre­
ceding section tha t assumption (1) is in error by 
somewhat less than 13% on the average. If the 
constants are evaluated midway between the acetic 
and formic acid values, the expected deviations be­
tween calculated and observed frequencies are only 
3 % or less. 

The bond distances adopted were: r[C=O) = 
1.25 A., KC-O) = 1.35 A., K O - H ) = 0.95 A., r[0 • • 
O) = 2.75 A., K C - H ) = 1.085 A., and KC-CH 3 ) = 
1.54 A. The methyl group of acetic acid was 
treated as a point mass. 

The value of .F33 = -IKy- + 4(//i.vi- + H2Xt2) K r of 
eq. 6 was calculated by the method of least squares 
from the observed frequency of 237 em." 1 (formic 
acid) and 1S8 cm." 1 (acetic acid). The values of 
/Ii and Hi were then adjusted so tha t the calcu­
lated Vi frequency of formic acid agreed with the 
observed value of 160 cm. x and the. calculated en­
tropy of formic acid and acetic acid diuiers fitted 
best with the observed values (Table I ) . The re­
sult of the calculation is shown in Table I I . I t will 

T ABI. K i l 

OHSKRVKU AND CALCULATED FREQUENCIES AND CALCULATED 

IINTROPV AT 3 7 3 ° K . OF LOW FREQUENCY VIBRATIONS OF 

FORMIC ACID AND ACETIC ACID DIMERS 

( H C O O H ) 2 
Yi bra- -—Frequency—• .">: 
t ion Obsd . Ca lcd . CaI 

j.i(a8) 232" 221 2.36 
^2(a8) 103 3.84 
v>(K) 2376 248 2.15 
<Kau) 160b 160 2.98 
*s(au) 60 4.85 
y6(be) 243 2.19 

Sum of entropy 
(calcd.) 18.37 
(obsd.) 18.60 

cd. 

± 0.;: 

. ( C H 3 C O O H ) 2 . 
.—Frequency—- .̂ 37B 
Obsd. Calcd . Ca lcd . 

188^ 

193 2.62 
95 3.99 

180 2.74 
80 4.33 
46 5.43 

128 3.40 

22.51 
22.26 

Ref. 3 . '' Ref. 5. 
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be seen t ha t the calculated and observed entropy 
values agree within approximately the experimental 
error, even though the same values of force con­
s tants were used in both cases. The differences are, 
of course, in opposite directions. The force con­
s tants thus calculated are 

K(U- -O) = 0.33 X 106 dyne/cm. 
H1 = 0.043 X 10"11 erg/radian2 

and 
H2 = 0.027 X 10-" erg/radian2 

Stretching Force Constant.—Halford6 estimated 
the value of K as 0.41 X 105 dyne /cm. from the 
ratio empirically found between the values of force 
constant and of heat of dissociation. This is not 
too much different from the value of 0.33 X 105 

obtained in the present s tudy. Slutsky and Bauer7 

assumed a potential function 
V = Aff[(r0/r)» - 2(r„/V)8] 

where AH is one-half the dissociation energy of the 
dimer and the variable r is the O • • O distance. 
They predicted a value of 0.12 X 105. This is 
much smaller than the value of 0.33 X 105. How­
ever, if the variable r is taken as the H • • O distance 
instead of the O • • O distance, a value of 0.29 X 1 0 6 

results which approximates t ha t calculated in the 
present s tudy. 

I t is interesting to compare the value of K(R • • O) 
with t ha t of K(O-R). The value of K(O-H) of 
formic acid monomer is 7.2 X 105 and so the rat io 
of K(O-R): (H • • O) = 1:0.05. This value of 
5 % is the same order of magnitude as the bond or­
der of water-water hydrogen bond (3%) calculated 
by Coulson and Danielsson.13 

Bending Potential Constant.—The potential con­
s tant Ht is associated with the in-plane and out-of-
plane angular displacement of hydrogen atom with 
respect to the • • O = C - O group with which it is 
hydrogen-bonded. I t s value of 0.027 X 1O - 1 1 is 
4 % of the value 0.7 X 1 0 - 1 1 of the bending constant 
H - O - C . The ratio of the OH stretching and 
bending constants is K(O-H): H(H-O-C) = 1:0. Io 
X 10 - 1 6 , while the ratio of the H • • O stretching 
and bending constants is nearly the same, K(R • • O) 
:H(H • • O = C ) = 1:0.12 X 1O -16. 

Calculated Frequencies.—The calculated Raman 
frequencies of formic acid dimer are 243, 221 and 
103 c m . - 1 . The only Raman line observed a t 232 
c m . - 1 may be due to the two vibrations 243 and 221 
c m . - 1 . Raman lines of acetic acid dimer are ex­
pected a t 193, 128 and 95 c m . - 1 . As shown in Ta­
ble I1 all the infrared frequencies calculated above 
160 c m . - 1 have been observed. The frequencies to 
be observed are p6(au) = 60 c m . - 1 for formic acid, 
and Vi(SLn) = 80 c m . - 1 and va(au) = 46 c m . - 1 for 
acetic acid. 

Vibrational Amplitude.—The nature of the low 
frequency vibrations may be discussed in terms of 
the vibrational amplitude of each internal coordi­
nate . Relative amplitudes in the a th normal vibra­
tion can be calculated from the L matrix denned by 
Ri = £ia<2a, where Ri and Q3. are the i th internal 
coordinate and the a th normal coordinate, respec­
tively.8 The calculated values of the L matrix 
elements are shown in Table I I I . The fractional 
potential energy associated with each force con-

(13) C. A. Coulson and U. Danielsson, ArHv. Fysik, 8, 245 (1954). 

stant1 4 is another measure of the nature of a normal 
vibration, and the calculated values are shown in 
Table IV. I t may be pointed out tha t the number 
given in the table is equal to (cX>a

2)/c).Kh)/Va2, 
where Kh is the h th force constant. 

TABLE III 

ELEMENTS OF L MATRICES OF FORMIC ACID AND ACETIC ACID 

DIMERS" 

ARA 

" A 

A ^ B 

« B 

XA 

^ A 

XB 

0B 

1 
Qi 

+ 0 . 0 8 i 

-
+ 
-

0O2 

. 0 8 i 

.0O 2 

Qt 
+ 0 . 0 I 0 

+ 
+ 
+ 

. 196 
. 0 I 0 

• 198 

:HCOOH) 2 

Q". 
+ 0 
- r 

+ 
+ 

. 00) 

. 0 9 4 

.0Oi 

.094 

Qi 
- 0 

+ 
— 
+ 

• 0 8 5 

. 0 5 3 

• 0 8 5 

.O03 

Qi 

0 
^ 0 . 0 T 8 

0 
- 0 . 0 7 8 

Os 
- 0 . 0 O 2 

+ .2O 9 

+ .0O 2 

- .2O 9 

< 
+ C 

+ 
-f 

+ 
( 

(I 
2. 
i .07 i 
.0O 0 

. 0 7 i 

.0O 0 

34 
+ 0 . 0 6 8 

+ 
+ 
+ 

. 0 4 i 

. 0 6 8 

. 0 4 i 

; H J C O O H : 

Os 
- 0 . 0 O o 
+ . 0 6 7 

- 0O 0 

+ . 0 6 7 

Qi 
- 0 . 0 5 2 

+ .O64 
- . 0 5 2 

+ . 0 6 4 

Ii • 

0* 
0 

+ 0 . 0 S 7 

0 
- 0 . 0 5 7 

0« 
+ 0 . 0 O 0 

+ .084 
- .0O 0 

- .084 
0 Numerical values in the first and third columns are in 

1012 c.g.s. unit and others in 1020 c.g.s. unit, x, ^ and u are 
the rotational displacements around the X-, Y- and Z- axes, 
respectively (see Fig. 1). 

TABLE IV 
FRACTIONAL POTENTIAL ENERGY ASSOCIATED WITH EACH 

FORCE CONSTANT 
. (HCOOH). . --(CH3COOH)" . 

K(H- -O) 
I V ( O - H - -O) 

H2'(H- -O=O 

1.0 
0.0 
0.0 

0.0 
.6 
.4 

0.95 1.0 
.0 0.0 
.05 0.0 

0.0 
.6 
.4 

0.95 
.0 
.O5 

Hi-(O-H--O) 0.95 O.O5 0.55 O.85 O.I5 0.55 
H2"(H- -O=C-O) .05 .95 .45 .15 .85 -45 

As shown in these tables, v\ is the translational 
vibration of each monomer unit and vn and vs are 
the rotational vibrations in the dimer plane, how­
ever, as for the potential energy, vx and v-s are the 
hydrogen bond stretching vibrations and v* the 
hydrogen bond bending vibration. 

The out-of-plane vibration ^6 is essentially the 
rotational vibration around the Y-axis and its fre­
quency depends on Hi"(0-R • • O) as well as on H2"-
(H • • O = C - O ) . 

The Vi vibration of formic acid is essentially the 
rotational vibration around the Y-axis, while in the 
case of the v& vibration of formic acid and the vt and 
Vf, vibrations of acetic acid, the amplitudes of the 
rotational displacements around the X- and Y-axes 
are nearly the same. Referring to the fractional 
potential energy associated with each force con­
stant, however, vt may well be called the O-H • • O 
bending vibration and v$ the H • • O = C - O tor­
sional vibration both in the case of formic acid and 
acetic acid. 

Approximation in Calculating Low Frequency 
Vibrations.—In the preceding section, the vibra­
tional frequencies were calculated using the rigid 
monomer model (method I I ) . The validity of this 
approximation may be examined by a comparison 
of such frequencies with those calculated without 
separating high frequency vibrations (method I I I ) . 
The equations for the out-of-plane frequency calcu­
lation by method I I I are given in Appendix I. The 
values of the force constants Ha = 0.59 X 1 0 - 1 1 

and He = 0.22 X 1O - 1 1 erg/radian2 were chosen so 
tha t the calculated high frequencies of formic acid 
dimer agreed with the observed values6 for the vari-

(14) T. Miyazawa, / : Cliem. Soc. Japan, 76, 1132 (1955). 
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ous isotopic species. The low frequencies thus cal­
culated are shown in Table V. The frequencies 
calculated using the rigid monomer model (method 
II) are higher than those calculated by method III, 
since the assumption of the rigid monomer model is 
physically equivalent with the neglect of the inter­
action with the high frequency vibrations. How­
ever, the resulting difference between the two 
methods is less than 8%, thus rendering support to 
the rigid monomer model. 

As mentioned in a previous section, in the case of 
symmetric vibrations the actual center of the ro­
tational vibrations of a monomer unit is shifted 
away from the center of mass of its own. There­
fore if the center of the rotational vibrations is as­
sumed to be at the center of the mass of the mono­
mer (method I), it should lead to non-genuine vi­
brations. Even though this assumption is not 
valid physically, the frequency errors (see Table V) 
are 18% for 2̂ and 8% for 6̂ and thus are not too 
serious. 

Atomic Polarization.—The atomic polarization 
PA of formic acid dimer has been measured and 
found to be 15.5 cc. in the vapor phase15 and 15.2 cc. 
in heptane solution,16 while that of acetic acid dimer 
in heptane solution16 is 17 cc. It is interesting to 
calculate P A by the present rigid monomer treat­
ment and see whether the calculated value comes 
out to be the same order of magnitude as that ob­
served. 

The atomic polarization P A is related with the 
electric moments by the equation 

Fu — ̂ 55 — Fit2 

where N is the Avogadro number and ^x and /iy are 
the x and y components of the dipole moment of a 
monomer unit. Insertion of the various potential 
constants yields 

PA = 2.2*.,» + 2.2MxMy + 2.0My2 (19) 
where the /I'S are in Debye units and P A is in cc. 
The direction of the dipole moment of carboxylic 
acid was measured for a series of substituted ben­
zoic acids.17 If the same direction is assumed for 
formic acid monomer (fi = 1.8 D in non-polar solu­
tion),18 jux = 0.5 D and ny = 1.7 D. These values 
yield a value of P A = 8 cc , which is about half of 
the observed value. Accordingly the independent 
rigid model using the monomer moment is not too 
satisfactory. It is, however, conceivable that the 
y component fiy of a monomer unit increases on di-
merization because of increased contribution of the 
polar electronic structure O - - C H = O H + . If fiy 
is increased by 0.8 D, then the calculated value of P A 
agrees with the experimental value of 15 cc. 

Appendix I 
Complete Inverse Kinetic and Potential Energy 

Matrices for Out-of-plane Vibrations.—The in-
(15) I. E. Coop, N. R. Davidson and L. E. Sutton, J. CHem. Phys., 

6, 905 (1938). 
(16) H. A. Pohl, M. E. Hobbs and P. M. Gross, ibid., 9, 408 (1941); 

A. A. Maryott, M. E. Hobbs and P. M. Gross, ibid., 9, 415 (1941). 
(17) C. S. Brooks and M. E. Hobbs, T H I S JOURNAL, 62, 285 (1940); 

M. E. Hobbs and A. J. Weith, Jr., ibid., 65, 967 (1943). 
(18) C. P. Smyth, "Dielectric Behavior and Structure," McGraw-

Hill Book Co., Inc., New York, N . Y., 1955, b . 304. 

IMPARISOIi 

Vibration 

n(a-i) 

^(ag) 

j>3(bu) 
c4(au) 

vs,(an) 

««(bg) 

TABLE V 

r OF FREQUENCIES CALCULATED BY THE TK 

I 

221 

86 

248 

160 

60 

235 

METHODS 
—/TTrnnwi.-

Il 

221 

103 

248 

160 

60 

243 

i n 

145 

58 

222 

(CHiCOOH)! 
I II 

193 193 

81 95 

180 180 

80 80 

46 46 

116 128 

verse kinetic and potential energy matrices were 
calculated for all out-of-plane vibrations of the 
dimer by the Wilson8 GF matrix method. The 
internal coordinates19 are: the out-of-plane skeletal 
deformation coordinates So(CoO1R2Os) and O5, O-H 
torsional coordinates 0I4(Oi=Co—O3—H4) and 0e9, 
024(Ra-C0-O3-H4) and 079, of each monomer together 
with the coordinates 093(H9 • • Oi=C0—O3) and 048> 
and 092(H9 • • O1=C0—Rs-) and 04J, and the interbond 
angle bending coordinates (3346(03-H4 • • Oe) and 
/3s9i. The symmetry coordinates were constructed 
from these internal coordinates so that the resulting 
potential energy matrix was appropriate for the ap­
proximate separation of the high and low frequency 
vibrations. 

Symmetry coordinates in the au class are 
5 8 = (O0 + fij)/3Vl + ( -«14 - 069 + 0U + 079 + 09i + 

04a - 6n - 0w)(3/64)'/i 

Sb = (»14 + 069 + «24 + 07»)(3/16)Vl 
S4 = (09! + *4S + 0m + <?B)(3/16)Vl 

and 
S5 = (i3.«6 + 0m)/2'/' 

and those in the bg class are 
5C = (O0 - fi5)/3V. + (-0,4 + (I69 + AS2, -

079 + 093 - 048 ~ 092 + 0 5 8 ) (3 /64 ) , / ! 

Si = (3014 - 3069 + 3021 - 3079 - 093 + 048 -

092 + 0.«)(3/192)'A - (Sm - ft9I)/12'/2 
and 

5« = (-093 + 048 ~ 092 + 0M)/8'/« - (/389I - /3316)/0'/. 

5a , Sb, Sc and Sd are those related with the inter­
nal vibrations of monomer units; S11 and Sc cor­
respond to the out-of-plane deformation coordi­
nates, and Sb and .Sd to the internal rotation around 
the C-O bond. S4, S6 and S6 are the coordinates 
for the low frequency vibrations which were de­
fined in eq. 8 and 9. 

The inverse kinetic energy matrix expressed in 
terms of these symmetry coordinates was calcu­
lated by the use of the B matrix8 which is denned as 
Sj = 5;k2k. (zk is the out-of-plane displacement of 
the kth atom.) 

BaO — TOI + T02 + T0J 
•Sal = — TOl 
5 a2 — — T02 
5„J = — T03 
5.4 = 0 
2S40 = TOl — T02 -)- To» 
2.841 = —TOl — 2 T U 
2B42 = T02 
2B43 = — Toa 
2544 = 2 T I » 
25b0 = — TOl + T02 — TOJ 
2 5 b i = TOI 
2Bb2 = — T02 
2 5 b ! = TOJ + 2T 3 4 
25b4 — —2T34 

(19) T. Miyazawa, T. Shimanouchi and S. Mizusbima J. Chem., 
Phys., 23, 408 (1956). 
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21AB60 «= 0 
2ViJS61 = - T 1 , 
2'AS6 2 = 0 
2 'AS 6 , = - T „ 
2 ' A S 6 4 = T19 + T34 

6'AS6O = — TOl + T02 — To, 
6'ASei = Toi + 3 T I » 
6 ' A S 62 = -TOS 
6 'ABe3 = T03 — T 3 4 

6'AS64 = T34 + 3 T U 
Sij = S;,i + s (.for i — a, b, 4 or 5) 
Sij = —Si.j+B (for i = c, d, or 6) 
•B«i = S0j 
2 S b j = 3'AS11J 

and 
TkI = I A k I 

The potential function for the out-of-plane vibra­
tions was chosen to be 
27 = HQ(Q, + Qt2) + He [(S1, + <?«)» + (9„ + A7,)']/4 

+ fli"(/W + / W ) + ff2"[(039 + e2Sy + (8si + O74)
2I/4 

Here Ha and H9 are the force constants for the out-
of-plane skeletal deformation and for the O - H tor­
sion, respectively. The elements of the potential 
energy matrix expressed in terms of the symmetry 
coordinates are 

Fsa = 3HS2/8 
Fbb = 2H9/3 
-T44 = 2/32 / 3 
F66 = H^" 
F0C = 3Ha/S 
Fdd = He/2 + H 76 + H//18 
Fd. = -ffi718'/i + 2ViH,79 
F,6 = H173 + 4H2 79 

and all other cross terms are equal to zero. 
The approximate calculation of the low fre­

quency vibrations may be made by the use of the G 
and F matrices now derived. For the calculation, 
the G matrix elements G44, Gn, GM and GM were 
modified8'20 so that they were in accord with the 
rigid monomer model, while the corresponding F 
matrix elements were used without modification. 
The rigid monomer model is physically equivalent 
with the assumption of infinite values for the force 
constants Ha and H6. The F matrix elements for 
the low frequency vibrations necessarily do not con­
tain these constants. 

(20) B. L. Crawford, Jr., and J. T. Edsall, / . Chem. Phys., 7, 223 
(1939). 
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The Molecular Weight of Insoluble Sodium Metaphosphate1 

BY ULRICH P. STRAUSS AND JEAN W. DAY 

RECEIVED JULY 25, 1958 

The molecular weight of an "insoluble" sodium metaphosphate, NaPO3 II, was determined from intrinsic viscosity meas­
urements in aqueous lithium bromide. The necessary intrinsic viscosity-molecular weight relationships were obtained from 
viscosity measurements of several potassium Kurrol salts whose molecular weights ranged from 220,000 to 1,320,000. The 
results establish NaPO3 II as a long-chain polyphosphate with a molecular weight of at least 280,000. 

While much work has been done on the NaPO 3 

system2 there are considerable gaps in our knowl­
edge of these compounds. X - R a y and micro­
scopic studies have established the existence of a t 
least three forms of crystalline NaPO 3 which are 
characterized as insoluble.3 Two of these forms, 
NaPO 3 I I and NaPO 3 I I I , have been denoted as 
Maddrell salts, and another form, NaPO 3 IV, has 
been called Kurrol salt. The Maddrell salts are 
believed to be high polymers2 4J however, proof of 
their s tructure is incomplete and their molecular 
weights apparent ly have not been determined. 

This paper describes the determination of the 
molecular weight of NaPO 3 I I . The problems were 
to identify the sample,5 to select a solvent and to 
determine the molecular weight by means of 
viscosity measurements. 

Results and Discussion 
Identification of Sample.—The X-ray diffraction 

pat tern identified the water-insoluble fraction, 
(1) The contents of this paper are contained in a thesis to be sub­

mitted by Jean W. Day to the Graduate School of Rutgers University 
in partial fulfillment of the requirements for the degree of Master of 
Science. This investigation was supported by a grant from the 
United States Atomic Energy Commission under Contract AT(30-1) 
1018. 

(2) B. Topley, Quart. Revs. (London), S, 345 (1949). 
(3) E. P. Partridge, Chem. Eng. News, 27, 214 (1949). 
(4) B. Thilo, G. Schulz and E. Wichmann, Z. anorg. allgem. Chem., 

272, 182 (1953). 
(5) The sample was commercial I M P produced by Monsanto 

Chemical Co. (G. E. Taylor and A. G. Erdman, U. S. Patent 2,356,799, 
May 27, 1943). 

which consti tuted 9 5 % of the sample, as NaPO 3 II .6 

No a t t empt was made to identify the water-sol­
uble constituents. Six-tenths of a per cent, of the 
sample was volatile when it was heated a t 600° 
for 18 hr. The sample was converted to the 
water-soluble Graham salt by heating a t 600°,7 

and the N a / P ratio was determined by t i t rat ing 
the aqueous solution obtained to the first equiva­
lence point8; the N a / P ratio was 1.03. The 
sample contained 9.69 meq. of phosphorus per 
gram of polymer,9 calculated on a dry basis. The 
theoretical value for a sodium metaphosphate of 
this composition is 9.72. The agreement is within 
the accuracy at tainable with the analytical tech­
nique. 

Solubility Characteristics.—While the sample 
was insoluble in water it could be dissolved in 
aqueous LiBr. T h e dissolution probably involves 
an ion-exchange mechanism similar to tha t en­
countered with potassium Kurrol salt.10 

Determination of Molecular Weight.—Several 
potassium Kurrol salts whose molecular weights 
ranged from 220,000 to 1,320,000 were used to 
prepare a calibration curve to estimate the mo­

ts) ASTM 2412, d, 2-0766. 
(7) E. P. Partridge, V. Hicks and G. W. Smith, T H I S JOURNAL, 63, 

454 (1941). 
(8) U. P. Strauss and T. L. Treitler, ibid., 77, 1473 (1955). 
(9) This was determined by potentiometric titration of the hy-

drolyzed polymer using NaOH as described by J. R. Van Wazer, et al., 
ibid., 72, 639, 6.44, 647, 655, 906 (1950). 

(10) R. Pfanstiel and R. K. Her, ibid., 74, 6059 (1952). 


